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McGurk-MacDonald effect

Acoustic

Perception Da-da signal

Lips
ga-ga

McGurk H, Macdonald J 1976 Hearing lips and seeing voices.
Nature, 264, 746748
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https://www.youtube.com/watch?v=jtsfidRq2tw

Defining multisensory integration

» Multisensory integration (M) “Inputs from two or more
senses are combined to form a product that is distinct from,
and thus cannot be easily “deconstructed” to reconstitute, the
components from which it is created”(Stein & Meredith 1993)
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Defining multisensory integration

» Multisensory integration (M) “Inputs from two or more
senses are combined to form a product that is distinct from,
and thus cannot be easily “deconstructed” to reconstitute, the
components from which it is created”(Stein & Meredith 1993)

» Crossmodal interaction is defined as the situation in which
the perception of an event as measured in terms of one
modality is changed in some way by the concurrent
stimulation of one or more other sensory modalities (Welch
and Warren 1986).

Multisensory integration: a putative mechanism generating
crossmodal interaction (level: sensory, cognitive, and/or
motor)
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Sound-Induced Flash lllusion

From: http://www.psy.l.chiba-u.ac.jp/labo/vision2/SIF.html Shams, Kamitani; and Shimojo (2000)
llusions. What you see is what you hear. Nature, 408, 788
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https://www.youtube.com/watch?v=D3Z1cxA2Tp0&feature=youtu.be

Sound-Induced Flash lllusion

a0
7

From: http://www.psy.l.chiba-u.ac.jp/labo/vision2/SIF.html Shams, Kamitani; and Shimojo (2000)
llusions. What you see is what you hear. Nature, 408, 788

Cochlear implant patients have been shown to be more susceptible to the illusion.
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https://www.youtube.com/watch?v=D3Z1cxA2Tp0&feature=youtu.be

Multisensory RT paradigm:

REACTION TO MULTIPLE STIMULI
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Multisensory RT paradigm: Todd 1912

1904
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Measuring multisensory integration in RTs

P> experimental conditions:
V — only a visual stimulus is presented
A — only an auditory stimulus is presented
VA — a visual-auditory stimulus pair is presented
Task: Respond as quickly as possible to a stimulus of any
modality (“redundant signals/targets paradigm”)
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Race model inequality

» aka “Miller's inequality” (Miller 1982)
» For VA experiment:

PVA(min{V,A} < t) < P\/(V < t) + PA(A < t)
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Race model inequality

Fva(t) < min{Fy(t) + Fa(t),1} (%)

The upper bound is the distribution function of random variable
min(V, A) with maximal negative dependence between V/ and A |
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Race model inequality

Fva(t) < min{Fy(t) + Fa(t),1} (%)

The upper bound is the distribution function of random variable
min(V/, A) with maximal negative dependence between V and A !

This follows easily from the (lower of the) Fréchet-Hoeffding bounds
for any bivariate distribution (Colonius, 1990),

max{Fy(s) + Fa(t) — 1,0} < Hva(s, t) < min{Fy(s), Fa(t)}. (1)
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Race model inequality

Fva(t) < min{Fy(t) + Fa(t),1} (%)

The upper bound is the distribution function of random variable
min(V/, A) with maximal negative dependence between V and A !
This follows easily from the (lower of the) Fréchet-Hoeffding bounds
for any bivariate distribution (Colonius, 1990),

max{Fy(s) + Fa(t) — 1,0} < Hva(s, t) < min{Fy(s), Fa(t)}. (1)

Empirical violation of the upper bound in (*) = evidence against
the race mechanism (“bimodal RT faster than predictable from
unimodal conditions”).

» but it could also be evidence against the “context invariance”
assumption

» The upper (lower) bound in (1) is known as “comonotonicity”
(“countermonotonicity”) copula.
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“Time window of integration” modeling framework

Sensory Central
Periphery Processing
sumutes N
System Time V\?ndow Multisensory Saccadid
or Integration Reaction
Integration
Stimulus 2 Modality 2

A\ A J
Y Y

First Stage Second Stage

Cartoon version of TWIN framework

P First stage: race among the peripheral processes in the
sensory (V, A, T) pathways triggered by a crossmodal
stimulus complex.
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“Time window of integration” modeling framework

Sensory Central
Periphery Processing
sumutes N
System Time V¥|nd0w Multisensory Saccadic
or Integration Reaction
Integration
Stimulus 2 Modality 2

A\ A J
Y Y

First Stage Second Stage

Cartoon version of TWIN framework

> Time-Window assumption: multisensory integration occurs
only if the peripheral processes of the first stage all terminate
within a given temporal interval, the “time window of
integration”.
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“Time window of integration” modeling framework

Sensory Central
Periphery Processing
somuvs (|
System Time V¥|nd0w Multisensory Saccadic
or Integration Reaction
Integration
Stimulus 2 Modality 2

A\ A J
Y Y

First Stage Second Stage

Cartoon version of TWIN framework

» Second stage: all processes following the first stage including
preparation and execution of a response.
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Model assumptions
(i) V and A peripheral processing times for visual and auditory
stimuli in the first stage

(i) (Wh, Wa) random vector, Wi = min(A+ 7, V)
with 7 = SOA and
W, random duration of the second stage
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T=W+ W,

(iv) time-window assumption: necessary for integration (/) to
occur:

Hw,7) ={max(A+ 7, V) < min(A+ 1, V) +w},

w “width” of the time window
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Model assumptions
(i) V and A peripheral processing times for visual and auditory
stimuli in the first stage

(i) (Wh, Wa) random vector, Wi = min(A+ 7, V)
with 7 = SOA and
W, random duration of the second stage

(iii) T (observable) reaction time in the auditory-visual condition:
T=W+W

(iv) time-window assumption: necessary for integration (/) to
occur:

Hw,7) ={max(A+ 7, V) < min(A+ 1, V) +w},

w “width” of the time window

(v) stochastic independence assumption: W;|/ and W;|/l are
conditionally independent
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Expected reaction time

» 71 = P[/] prob. of integration and 1 — 7= = PP[C] prob. of no
integration

E[T] = E[W1 + W]
= 7TE[W1 + WQ“] + (1 — F)E[Wl + WQ‘C]
= E[W1 + W2’C] — 7T X (Al —i—Ag)

where
Aj=E[W[C] - E[W|], i=1,2

the magnitude of the integration effect in stage i.
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TWIN model: Structure of dependence between
the stages
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Going beyond the mean

T=W+ W,

Wi and Wa conditionally independent (on /)

V[T] = VWi + W] = V[W4] + V[Wa] + 2 Cov[Wy, Wh]

What can we say about Cov[W;, W] w/o assuming specific
distributions?
What about non-linear dependency between W; and W, ?
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Going beyond the mean: Cov[W;, W]

Proposition 1
Cov[Wi, Wo] =w(1 —m) A1 Ao
where
Ay = E[W1|C] — E[WA/] and A, = E[W,[C] — E[W,|].

Thus, for 7 different from zero or one,

- Cov[Wi, Wa] is positive if for both Wy and W, the mean is
(strictly) larger, or smaller, under the event of “no integration’
than under “integration” (facilitation or inhibition).
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Going beyond the mean: Cov[W;, W]

Proposition 1
Cov[Wi, Wo] =w(1 —m) A1 Ao
where
Ay = E[W1|C] — E[WA/] and A, = E[W,[C] — E[W,|].

Thus, for 7 different from zero or one,

- Cov[Wi, Wa] is positive if for both Wy and W, the mean is
(strictly) larger, or smaller, under the event of “no integration”
than under “integration” (facilitation or inhibition).

- Cov[Wi, Wy is negative if the ordering of means with respect to
“integration/no integration” differs between the two variables.

- Cov[Wi, Ws] is zero if there is no effect of integration: A; =0
or A, =0.
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The variance of W, W,

Fori=1,2,
VW] = aVIWi|l] + (1 = m)VIW;|C] + 7(1 — m)AF.

- weighted average of the conditional variances (weighted by
the probability of / and C occurring)

- plus an additional, non-negative term m(1 — )A? that is due
to the effect of the mixture generated by the occurrence of /
or C, and is maximal for 7 = 0.5
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Non-linear dependency of (Wi, W,): Kendall's 7

> Let (Wi1, Win), i = 1,2, be two independent and identically
distributed vectors with joint distribution function H.

At the population level, Kendall's tau is defined as the
probability of “concordance” between the two vectors minus
the probability of “discordance”,
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Non-linear dependency of (Wi, W,): Kendall's 7

> Let (Wi1, Win), i = 1,2, be two independent and identically
distributed vectors with joint distribution function H.

At the population level, Kendall's tau is defined as the
probability of “concordance” between the two vectors minus
the probability of “discordance”, i.e.,

7’( Wl, W2) :]P)[( Wll — W21)(W12 — W22) > 0]
— P[(Wh1 — War)(Wi2 — Wap) < 0)]

e.g., Wh1 is the first-stage processing time in i = 1 and Wy is
the first-stage processing time in j = 2.
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Kendall's 7 for TWIN model

Proposition 2

T(Wh, Wo) =2m(1 —m)(2V — 1)

with V a constant
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Kendall's 7 for TWIN model

Proposition 2

T(Wh, Wo) =2m(1 —m)(2V — 1)
with V' a constant

Proposition 3

For 7 different form zero or 1,
(i) i (WA|C) < (WA|l) or (W5|C) < (Wall), then
T(Wl, Wg) = 0

(il) 7(Wi, Wa) > —0.5.
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Summing up dependency results

(i) Kendall's 7 is non-zero only if both pairs of marginals,
(F1, Fc) and (G, G¢) contain nonidentical distributions. That
is, there must be an effect of integration in both stages.
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Summing up dependency results

(i) Kendall's 7 is non-zero only if both pairs of marginals,

(F1, Fc) and (G, G¢) contain nonidentical distributions. That
is, there must be an effect of integration in both stages.

(ii) In contrast, for Cov[Wj, W5] to be nonzero there must be an
effect of integration on the expected values in both pairs of
marginal distributions.

(iii) E.g., if (F;, Fc) have equal means but different variances,
processing times W; and W, will be linearly independent but
may exhibit nonlinear dependency.
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Summing up dependency results

(i) Kendall's 7 is non-zero only if both pairs of marginals,
(F1, Fc) and (G, G¢) contain nonidentical distributions. That
is, there must be an effect of integration in both stages.

(ii) In contrast, for Cov[Wj, W5] to be nonzero there must be an
effect of integration on the expected values in both pairs of
marginal distributions.

i) E.g., if (F;, Fc) have equal means but different variances,
g
processing times W; and W, will be linearly independent but
may exhibit nonlinear dependency.

> Additional result: the sign of dependency is determined by
[WAI] < [WA[CT and [Wa|l] <) [Wa|C]

<y likelihood ratio order (aka totally positive of order 2, TP>)
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Response Inhibition: Stop signal paradigm

NO STOP SIGNAL Trials

jon Time__w»

&

STOP SIGNAL Trials

Stop Signal Delay

" \‘ Signal-respond

Signal-inhibit

® =

—E

- Subjects are
instructed to make a
response as quickly as
possible to a go signal
(no-stop-signal trial)

- On a minority of
trials, a stop signal is
presented and
subjects have to
inhibit the previously
planned response
(stop-signal trial)
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Stop signal paradigm: inhibition functions

- Inhibition functions of
three subjects (Logan &
Cowan, 1984)

The inhibition function is
determined by stop-signal
delay, but it also depends
strongly on RT in the go
task; the probability of

responding given a stop

signal is lower the longer

1] 100 200 300 400 500 the go RT
Stop-Signal Delay

= s s
= > = -

P(Respond|Signal)

et
Y]
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The general race model
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The general race model (1)

» Distinguish two different experimental conditions termed
“context GO,” where only a go signal is presented, and
“context STOP", where a stop signal is presented in addition.
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time for the go and the stop signal, respectively, with
(unobservable !) bivariate distribution function

H(S, t) = ]P)( Tgo S S, 7_si.“op S t)7

for all s,t > 0.
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The general race model (1)

» Distinguish two different experimental conditions termed
“context GO,” where only a go signal is presented, and

“context STOP", where a stop signal is presented in addition.

» In STOP, let Ty, and Tgsp denote the random processing
time for the go and the stop signal, respectively, with
(unobservable !) bivariate distribution function

H(S, t) = ]P)( Tgo S S, 7_si.“op S t)7

for all s,t > 0.
» The marginal distributions of H(s, t) are denoted as

Fgo(s) = ]P( TgO <s, Tstop < OO)
Fstop(t) = P(Tgo < 00, Tstop < t).
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The general race model (2)

NOTE: The distribution of T, could be different in context GO
and in context STOP. However, the general race model rules this
out by adding the important

Context invariance assumption The distribution of go
signal processing time T, is the same in context GO and
context STOP.
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The general race model (2)

NOTE: The distribution of T, could be different in context GO
and in context STOP. However, the general race model rules this
out by adding the important

Context invariance assumption The distribution of go
signal processing time T, is the same in context GO and
context STOP.

Race assumption Probability of a response despite stop
signal at delay tg:

pr(ta) = P(Tgo < Totop + td) (2)

Assume H(s,t) = P(Tgo <'s, Tstop < t) is absolutely
continuous, so that bivariate and marginal densities exist.
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The general race model (3)

The RT distribution of responses given a stop signal at delay
ty (signal-response distribution) is

Fsr(t|ta) =P(Tgo < t| Tgo < Tstop + td)

Goal: Estimate the unobservable stop-signal processing time
distribution Fstop(t) as a measure of control behavior.
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The independent race model
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The independent race model (1)

Logan & Cowan (1984) suggested the independent race model
assuming stochastic independence between Tz, and Tsiop:

Stochastic independence: for all s, t

H(s,t) = P(Tgo < 5)P(Tstop < t) = Fgol(s) Fstop(t)
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The independent race model (1)

Logan & Cowan (1984) suggested the independent race model
assuming stochastic independence between Tz, and Tsiop:

Stochastic independence: for all s, t

H(s,t) = P(Tgo < 5)P(Tstop < t) = Fgol(s) Fstop(t)

Then

Pr(td) = P( Tgo < 7_stop + td)
~ [ el - Faslt -t de. (3)
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The independent race model (2)

Density of the signal-response time distribution Fs.(t|ty), for
t >ty

fsr(t [ ta) = fgo(t) [1 = Fstop(t — ta)]/pr(ta)-
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The independent race model (2)

Density of the signal-response time distribution Fs.(t|ty), for
t >ty

fsr(t [ ta) = fgo(t) [1 = Fstop(t — ta)]/pr(ta)-

Unfortunately obtaining reliable estimates for the stop signal
distribution requires unrealistically large numbers of
observations in practice (Band et al. 2003; Matzke et al.
2013).
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The independent race model (3)

P integration method
> mean method

See:

A consensus guide to capturing the ability to inhibit actions and
impulsive behaviors in the stop-signal task. Verbruggen F, awon ar,
Band GP, Beste C, Bissett PG, Brockett AT, Brown JW, Chamberlain SR, Chambers CD, Colonius H, Colzato LS,
Corneil BD, Coxon JP, Dupuis A, Eagle DM, Garavan H, Greenhouse |, Heathcote A, Huster RJ, Jahfari S,
Kenemans JL, Leunissen |, Li CR, Logan GD, Matzke D, Morein-Zamir S, Murthy A, Paré M, Poldrack RA,
Ridderinkhof KR, Robbins TW, Roesch M, Rubia K, Schachar RJ, Schall JD, Stock AK, Swann NC, Thakkar KN,

van der Molen MW, Vermeylen L, Vink M, Wessel JR, Whelan R, Zandbelt BB, Boehler CN.

Elife. 2019 Apr 29;8. pii: e46323. doi: 10.7554/eLife.46323.
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The paradox
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A paradox

Studying saccade
countermanding in
stop signal SSRT
monkeys, Hanes and — saccade

colleagues (Hanes & - [ ;u P
Schall 1995, Hanes et al. % signal
1998) recorded from g

frontal and supplem. eye 3 kol
fields. They found neurons stop signal
involved in gaze-shifting

and gaze-holding that B

modulate on stop-signal E

trials, just before SSRT hy

when the monkey stopped E

successfully. (Figure from R S
Schall & Logan 2017 ) 0 100 200 300 400

time (ms)
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A paradox

» The paradox: How can interacting circuits of mutually
inhibitory gaze-holding and gaze-shifting neurons instantiate
STOP and GO processes with independent finishing times?
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Definition: Bivariate Copula (n = 2)

Definition
An 2-copula is a bivariate distribution function C with univariate
margins uniformly distributed on [0, 1].
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Definition: Bivariate Copula (n = 2)

Definition
An 2-copula is a bivariate distribution function C with univariate
margins uniformly distributed on [0, 1].

Theorem (Sklar's Theorem, 1959)

Let F(x1,x2) be a bivariate distribution function with margins
F1(x1), Fa(x2), then there exists an 2-copula C : [0,1]> — [0, 1]
that satisfies

F(Xl,XQ) = C(Fl(Xl)7 F2(X2)), (X1,X2) (S §R2.

If F71, F;t are the quantile functions of the margins, then for any
(u1,w) € [0,1]2

Clur, up) = F(Fy H(ur), Fy(w2)).

Example 1: C(u1, up) = urup = Fgo(s) Fstop(t) (independence

copula)
3651



Example 2: The bivariate Farlie-Gumbel-Morgenstern
(FGM ) copula

C5(u1, U2) =1 U2[]. + 5(1 — u1)(1 — U2)],

for —1<d<land 0 < uwup,u <1.
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Resolving the paradox:
a race model with perfect negative dependence
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The Fréchet-Hoeffding lower bound copula

» For any bivariate distribution function
H(s,t) =P(Tgo < s, Tstop < t)
the following inequality holds:
H™ (s, t) < H(s, t)

with H™ (s, t) = max{Fgo(s) + Fstop(t) — 1,0}
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Perfect negative dependence

What does it mean?

H™ (s, t) = max{Fgo(s) + Fstop(t) — 1,0}.  (4)

for all s, t (s,t > 0).

The marginal distributions of H™ (s, t) are the same as before,
that is, Fgo(s) and Fseop(t).
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Perfect negative dependence

What does it mean?

H™ (s, t) = max{Fgo(s) + Fstop(t) — 1,0}.  (4)

for all s, t (s,t > 0).

The marginal distributions of H™ (s, t) are the same as before,
that is, Fgo(s) and Fseop(t).

Fstop(Tstop) =1l = Fgo(Tgo) (5)

holds “almost surely”, that is, with probability 1.
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Perfect negative dependence: the key property

Fstop(Tstop) =1 = Fgo(Tgo) (6) ]

holds “almost surely”, that is, with probability 1.

» Thus, for any Fg, percentile we immediately obtain the
corresponding Fstop percentile as complementary probability
and vice versa, which expresses perfect negative dependence
between Tz, and Tsiop.
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Perfect negative dependence: the key property

Fstop(Tstop) == Fgo(Tgo) (6)

holds “almost surely”, that is, with probability 1.

» Thus, for any Fg, percentile we immediately obtain the
corresponding Fstop percentile as complementary probability
and vice versa, which expresses perfect negative dependence
between Tz, and Tsiop.

» It constitutes the most direct implementation of the notion of
“mutual inhibition” observed in neural data: any increase of
inhibitory activity (speed-up of Tsp) elicits a corresponding
decrease in “go” activity (slow-down of Tg,) and vice versa.
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Can we test for PND ?
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Can we test for PND ?

“Fan effect":

Cumulative Probability

100

8

g

SSD= 153
—S85D =241
—SSD =329
=—No Stop Signal

300 400 500 600 700 800 900
Response Time in ms

QR
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Can we test for PND ?

S 4 —

Q]

Q
dashed =

o IND

S ] line = PND
*Tgo> Tstop:

b exponential
distribution
*simulation:

N -

* copBasic
package in R

9

Q
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Predictions from perfect negative dependence

Do we have to throw away all measures obtained using the
independent model, like estimates of mean T, = SSRT?
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Predictions from perfect negative dependence

Do we have to throw away all measures obtained using the
independent model, like estimates of mean T, = SSRT?

No ! Because the (marginal) distribution of T, are the same
under independence and perfect negative dependence. Thus

E[ Tetop | IND] = E[ Terop | PND]

P Colonius H, Diederich A (2018) Paradox resolved: stop signal race model with
negative dependence. Psychological Review, Vol. 125, No. 6, 1051-1058.
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Race models with moderate
(negative) dependence
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Moderate dependence: the bivariate FGM copula

C5(U1, U2) =u U2[1 + 5(1 — u1)(1 — u2)],
for -1 <6<1

Cs5(Fgo(s), Fstop(t)) =P[Tgo < s, Tstop < t]
=Fgo(s) Fstop(t)[1 + 0(1 — Fgo(5))(1 — Fstop(t)).
Kendall's tau:

20
T(Tgm Tstop) = E > —0.222.
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Bivariate FGM copula with ¢

—1,7=-0222

DA
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Dependent race model with FGM copula

]P)[Tgo <s, 7_stop < t]
= Fgo(s)Fstop(t)[1 + 0(1 — Fgo(s))(1 — Fstop(t))]-

» Task: estimate § and Fsop(t) from observables | Work in
progress...

For example,

P(Tgo < t| Tstop = t — tq)
= Fao(t) [1 + 0(1 — Fgo(t))(1 — 2Fstop(t — ta))]-
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Summary

» Stochastic independence between go and stop signal
processing is not a necessary constraint that any model of
response inhibition must follow.
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» Stochastic independence between go and stop signal
processing is not a necessary constraint that any model of
response inhibition must follow.

» The race model with perfect negative stochastic
dependence is a natural way to unify the observation of
interacting circuits of mutually inhibitory gaze-holding and
gaze-shifting neurons with data on the behavioral level.

» Race models with moderate stochastic dependency can be
constructed via copulas but...

» . efficient estimation methods and non-arbitrary choice of the
copula type need further investigation.
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