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Multisensory integration: reaction time modeling
Non-linear dependency

Stop signal paradigm: reaction time modeling
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McGurk-MacDonald effect

Link McGurk H, Macdonald J 1976 Hearing lips and seeing voices.
Nature, 264, 746–748
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https://www.youtube.com/watch?v=jtsfidRq2tw


Defining multisensory integration

▶ Multisensory integration (MI) “Inputs from two or more
senses are combined to form a product that is distinct from,
and thus cannot be easily “deconstructed” to reconstitute, the
components from which it is created”(Stein & Meredith 1993)

▶ Crossmodal interaction is defined as the situation in which
the perception of an event as measured in terms of one
modality is changed in some way by the concurrent
stimulation of one or more other sensory modalities (Welch
and Warren 1986).
Multisensory integration: a putative mechanism generating
crossmodal interaction (level: sensory, cognitive, and/or
motor)
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Sound-Induced Flash Illusion

From: http://www.psy.l.chiba-u.ac.jp/labo/vision2/SIF.html Link Shams, Kamitani; and Shimojo (2000)
Ilusions. What you see is what you hear. Nature, 408, 788

Cochlear implant patients have been shown to be more susceptible to the illusion.
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https://www.youtube.com/watch?v=D3Z1cxA2Tp0&feature=youtu.be
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Multisensory RT paradigm: Todd 1912
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Multisensory RT paradigm: Todd 1912

L: light – E: shock – S: sound
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Measuring multisensory integration in RTs

▶ experimental conditions:
V – only a visual stimulus is presented
A – only an auditory stimulus is presented
VA – a visual-auditory stimulus pair is presented
Task: Respond as quickly as possible to a stimulus of any
modality (“redundant signals/targets paradigm”)
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Race model inequality

▶ aka “Miller’s inequality” (Miller 1982)
▶ For VA experiment:

PVA(min{V , A} ≤ t) ≤ PV (V ≤ t) + PA(A ≤ t)
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Race model inequality

FVA(t) ≤ min{FV (t) + FA(t), 1}︸ ︷︷ ︸ (∗)

The upper bound is the distribution function of random variable
min(V̂ , Â) with maximal negative dependence between V̂ and Â !

This follows easily from the (lower of the) Fréchet-Hoeffding bounds
for any bivariate distribution (Colonius, 1990),

max{FV (s) + FA(t) − 1, 0} ≤ HVA(s, t) ≤ min{FV (s), FA(t)}. (1)

Empirical violation of the upper bound in (*) =⇒ evidence against
the race mechanism (“bimodal RT faster than predictable from
unimodal conditions”).

▶ but it could also be evidence against the “context invariance”
assumption

▶ The upper (lower) bound in (1) is known as “comonotonicity”
(“countermonotonicity”) copula.
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min(V̂ , Â) with maximal negative dependence between V̂ and Â !
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“Time window of integration” modeling framework

Cartoon version of TWIN framework

▶ First stage: race among the peripheral processes in the
sensory (V, A, T) pathways triggered by a crossmodal
stimulus complex.
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“Time window of integration” modeling framework

Cartoon version of TWIN framework

▶ Time-Window assumption: multisensory integration occurs
only if the peripheral processes of the first stage all terminate
within a given temporal interval, the “time window of
integration”.
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“Time window of integration” modeling framework

Cartoon version of TWIN framework

▶ Second stage: all processes following the first stage including
preparation and execution of a response.
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Model assumptions
(i) V and A peripheral processing times for visual and auditory

stimuli in the first stage
(ii) (W1, W2) random vector, W1 = min(A + τ, V )

with τ = SOA and
W2 random duration of the second stage

(iii) T (observable) reaction time in the auditory-visual condition:

T = W1 + W2

(iv) time-window assumption: necessary for integration (I) to
occur:

I(ω, τ) = {max(A + τ, V ) < min(A + τ, V ) + ω},

ω “width” of the time window
(v) stochastic independence assumption: W1|I and W2|I are

conditionally independent
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Expected reaction time

▶ π = P[I] prob. of integration and 1 − π = P[C ] prob. of no
integration

E[T ] = E[W1 + W2]
= π E[W1 + W2|I] + (1 − π) E[W1 + W2|C ]
= E[W1 + W2|C ] − π × (∆1 + ∆2)

where
∆i = E[Wi |C ] − E[Wi |I], i = 1, 2

the magnitude of the integration effect in stage i .
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TWIN model: Structure of dependence between
the stages
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Going beyond the mean

T = W1 + W2

W1 and W2 conditionally independent (on I)

V[T ] = V[W1 + W2] = V[W1] + V[W2] + 2 Cov[W1, W2]

What can we say about Cov[W1, W2] w/o assuming specific
distributions?
What about non-linear dependency between W1 and W2 ?
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Going beyond the mean: Cov[W1, W2]

Proposition 1

Cov[W1, W2] = π(1 − π) ∆1 ∆2

where

∆1 = E[W1|C ] − E[W1|I] and ∆2 = E[W2|C ] − E[W2|I].

Thus, for π different from zero or one,
- Cov[W1, W2] is positive if for both W1 and W2 the mean is
(strictly) larger, or smaller, under the event of “no integration”
than under “integration” (facilitation or inhibition).

- Cov[W1, W2] is negative if the ordering of means with respect to
“integration/no integration” differs between the two variables.
- Cov[W1, W2] is zero if there is no effect of integration: ∆1 = 0
or ∆2 = 0.
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The variance of W1, W2

For i = 1, 2,

V[Wi ] = πV[Wi |I] + (1 − π)V[Wi |C ] + π(1 − π)∆2
i .

- weighted average of the conditional variances (weighted by
the probability of I and C occurring)

- plus an additional, non-negative term π(1 − π)∆2
i that is due

to the effect of the mixture generated by the occurrence of I
or C , and is maximal for π = 0.5
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Non-linear dependency of (W1, W2): Kendall’s τ

▶ Let (Wi1, Wi2), i = 1, 2, be two independent and identically
distributed vectors with joint distribution function H.

At the population level, Kendall’s tau is defined as the
probability of “concordance” between the two vectors minus
the probability of “discordance”,

i.e.,

τ(W1, W2) =P[(W11 − W21)(W12 − W22) > 0]
− P[(W11 − W21)(W12 − W22) < 0)]

e.g., W11 is the first-stage processing time in i = 1 and W21 is
the first-stage processing time in i = 2.
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Kendall’s τ for TWIN model

Proposition 2

τ(W1, W2) = 2 π(1 − π)(2V − 1)

with V a constant

Proposition 3
For π different form zero or 1,
(i) if (W1|C) d= (W1|I ) or (W2|C) d= (W2|I ), then
τ(W1, W2) = 0.

(ii) τ(W1, W2) ≥ −0.5.

21 / 51



Kendall’s τ for TWIN model

Proposition 2

τ(W1, W2) = 2 π(1 − π)(2V − 1)

with V a constant
Proposition 3

For π different form zero or 1,
(i) if (W1|C) d= (W1|I ) or (W2|C) d= (W2|I ), then
τ(W1, W2) = 0.

(ii) τ(W1, W2) ≥ −0.5.

21 / 51



Summing up dependency results

(i) Kendall‘s τ is non-zero only if both pairs of marginals,
(FI , FC ) and (GI , GC ) contain nonidentical distributions. That
is, there must be an effect of integration in both stages.

(ii) In contrast, for Cov[W1, W2] to be nonzero there must be an
effect of integration on the expected values in both pairs of
marginal distributions.

(iii) E.g., if (FI , FC ) have equal means but different variances,
processing times W1 and W2 will be linearly independent but
may exhibit nonlinear dependency.

▶ Additional result: the sign of dependency is determined by

[W1|I] ≤lr [W1|C ] and [W2|I] ≤lr [W2|C ]

≤lr likelihood ratio order (aka totally positive of order 2, TP2)
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Response Inhibition: Stop signal paradigm

- Subjects are
instructed to make a
response as quickly as
possible to a go signal
(no-stop-signal trial)

- On a minority of
trials, a stop signal is
presented and
subjects have to
inhibit the previously
planned response
(stop-signal trial)
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Stop signal paradigm: inhibition functions

- Inhibition functions of
three subjects (Logan &
Cowan, 1984)

- The inhibition function is
determined by stop-signal
delay, but it also depends
strongly on RT in the go
task; the probability of
responding given a stop
signal is lower the longer
the go RT
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The general race model
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The general race model (1)

▶ Distinguish two different experimental conditions termed
“context GO,” where only a go signal is presented, and
“context STOP”, where a stop signal is presented in addition.

▶ In STOP, let Tgo and Tstop denote the random processing
time for the go and the stop signal, respectively, with
(unobservable !) bivariate distribution function

H(s, t) = P(Tgo ≤ s, Tstop ≤ t),

for all s, t ≥ 0.
▶ The marginal distributions of H(s, t) are denoted as

Fgo(s) = P(Tgo ≤ s, Tstop < ∞)
Fstop(t) = P(Tgo < ∞, Tstop ≤ t).
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The general race model (2)

NOTE: The distribution of Tgo could be different in context GO
and in context STOP. However, the general race model rules this
out by adding the important

Context invariance assumption The distribution of go
signal processing time Tgo is the same in context GO and
context STOP.

Race assumption Probability of a response despite stop
signal at delay td :

pr (td) = P(Tgo < Tstop + td) (2)

Assume H(s, t) = P(Tgo ≤ s, Tstop ≤ t) is absolutely
continuous, so that bivariate and marginal densities exist.
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The general race model (3)

The RT distribution of responses given a stop signal at delay
td (signal-response distribution) is

Fsr (t | td) = P(Tgo ≤ t | Tgo < Tstop + td)

Goal: Estimate the unobservable stop-signal processing time
distribution Fstop(t) as a measure of control behavior.
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The independent race model
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The independent race model (1)

Logan & Cowan (1984) suggested the independent race model
assuming stochastic independence between Tgo and Tstop:

Stochastic independence: for all s, t

H(s, t) = P(Tgo ≤ s)P(Tstop ≤ t) = Fgo(s) Fstop(t)

Then

pr (td) = P(Tgo < Tstop + td)

=
∫ ∞

0
fgo(t) [1 − Fstop(t − td)] dt. (3)
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The independent race model (2)

Density of the signal-response time distribution Fsr (t|td), for
t > td

fsr (t | td) = fgo(t) [1 − Fstop(t − td)]/pr (td).

Unfortunately obtaining reliable estimates for the stop signal
distribution requires unrealistically large numbers of
observations in practice (Band et al. 2003; Matzke et al.
2013).
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The independent race model (3)

▶ integration method
▶ mean method

see:
A consensus guide to capturing the ability to inhibit actions and
impulsive behaviors in the stop-signal task. Verbruggen F, Aron AR,

Band GP, Beste C, Bissett PG, Brockett AT, Brown JW, Chamberlain SR, Chambers CD, Colonius H, Colzato LS,

Corneil BD, Coxon JP, Dupuis A, Eagle DM, Garavan H, Greenhouse I, Heathcote A, Huster RJ, Jahfari S,

Kenemans JL, Leunissen I, Li CR, Logan GD, Matzke D, Morein-Zamir S, Murthy A, Paré M, Poldrack RA,

Ridderinkhof KR, Robbins TW, Roesch M, Rubia K, Schachar RJ, Schall JD, Stock AK, Swann NC, Thakkar KN,

van der Molen MW, Vermeylen L, Vink M, Wessel JR, Whelan R, Zandbelt BB, Boehler CN.

Elife. 2019 Apr 29;8. pii: e46323. doi: 10.7554/eLife.46323.
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The paradox
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A paradox

Studying saccade
countermanding in
monkeys, Hanes and
colleagues (Hanes &
Schall 1995, Hanes et al.
1998) recorded from
frontal and supplem. eye
fields. They found neurons
involved in gaze-shifting
and gaze-holding that
modulate on stop-signal
trials, just before SSRT
when the monkey stopped
successfully. (Figure from
Schall & Logan 2017 )
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A paradox

▶ The paradox: How can interacting circuits of mutually
inhibitory gaze-holding and gaze-shifting neurons instantiate
STOP and GO processes with independent finishing times?
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Definition: Bivariate Copula (n = 2)
Definition
An 2-copula is a bivariate distribution function C with univariate
margins uniformly distributed on [0, 1].

Theorem (Sklar’s Theorem, 1959)
Let F (x1, x2) be a bivariate distribution function with margins
F1(x1), F2(x2); then there exists an 2-copula C : [0, 1]2 −→ [0, 1]
that satisfies

F (x1, x2) = C(F1(x1), F2(x2)), (x1, x2) ∈ ℜ2.

If F −1
1 , F −1

2 are the quantile functions of the margins, then for any
(u1, u2) ∈ [0, 1]2

C(u1, u2) = F (F −1
1 (u1), F −1

2 (u2)).

Example 1: C(u1, u2) = u1u2 = Fgo(s) Fstop(t) (independence
copula)
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Example 2: The bivariate Farlie-Gumbel-Morgenstern
(FGM ) copula

Cδ(u1, u2) = u1 u2[1 + δ(1 − u1)(1 − u2)],

for −1 ≤ δ ≤ 1 and 0 ≤ u1, u2 ≤ 1.
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Resolving the paradox:
a race model with perfect negative dependence
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The Fréchet-Hoeffding lower bound copula

▶ For any bivariate distribution function

H(s, t) = P(Tgo ≤ s, Tstop ≤ t)

the following inequality holds:

H−(s, t) ≤ H(s, t)

with H−(s, t) = max{Fgo(s) + Fstop(t) − 1, 0}

39 / 51



Perfect negative dependence

What does it mean?

H−(s, t) = max{Fgo(s) + Fstop(t) − 1, 0}. (4)

for all s, t (s, t ≥ 0).
The marginal distributions of H−(s, t) are the same as before,
that is, Fgo(s) and Fstop(t).

Fstop(Tstop) = 1 − Fgo(Tgo) (5)

holds “almost surely”, that is, with probability 1.
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Perfect negative dependence: the key property

Fstop(Tstop) = 1 − Fgo(Tgo) (6)

holds “almost surely”, that is, with probability 1.
▶ Thus, for any Fgo percentile we immediately obtain the

corresponding Fstop percentile as complementary probability
and vice versa, which expresses perfect negative dependence
between Tgo and Tstop.

▶ It constitutes the most direct implementation of the notion of
“mutual inhibition” observed in neural data: any increase of
inhibitory activity (speed-up of Tstop) elicits a corresponding
decrease in “go” activity (slow-down of Tgo) and vice versa.
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Can we test for PND ?

“Fan effect”:
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Can we test for PND ?

dashed =
IND
line = PND
*Tgo, Tstop:
exponential
distribution
*simulation:
copBasic
package in R
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Predictions from perfect negative dependence

Do we have to throw away all measures obtained using the
independent model, like estimates of mean Tstop ≡ SSRT?

No ! Because the (marginal) distribution of Tstop are the same
under independence and perfect negative dependence. Thus

E[Tstop | IND] = E[Tstop | PND]

▶ Colonius H, Diederich A (2018) Paradox resolved: stop signal race model with
negative dependence. Psychological Review, Vol. 125, No. 6, 1051–1058.
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Race models with moderate
(negative) dependence
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Moderate dependence: the bivariate FGM copula

Cδ(u1, u2) = u1 u2[1 + δ(1 − u1)(1 − u2)],

for −1 ≤ δ ≤ 1

Cδ(Fgo(s), Fstop(t)) =P[Tgo ≤ s, Tstop ≤ t]
=Fgo(s)Fstop(t)[1 + δ(1 − Fgo(s))(1 − Fstop(t))].

Kendall’s tau:

τ(Tgo, Tstop) = 2δ

9 ≥ −0.222.
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Bivariate FGM copula with δ = −1, τ = −0.222
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Dependent race model with FGM copula

P[Tgo ≤ s, Tstop ≤ t]
= Fgo(s)Fstop(t)[1 + δ(1 − Fgo(s))(1 − Fstop(t))].

▶ Task: estimate δ and Fstop(t) from observables ! Work in
progress...

For example,

P(Tgo ≤ t|Tstop = t − td)
= Fgo(t) [1 + δ(1 − Fgo(t))(1 − 2Fstop(t − td))].
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Summary

▶ Stochastic independence between go and stop signal
processing is not a necessary constraint that any model of
response inhibition must follow.

▶ The race model with perfect negative stochastic
dependence is a natural way to unify the observation of
interacting circuits of mutually inhibitory gaze-holding and
gaze-shifting neurons with data on the behavioral level.

▶ Race models with moderate stochastic dependency can be
constructed via copulas but...

▶ ...efficient estimation methods and non-arbitrary choice of the
copula type need further investigation.
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