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Fréchet-Hoeffding bounds for copulas

For any copula C(u,v),

max(u+ v —1,0) < C(u,v) < min(u, v).

» Proof:
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*
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W(u,v) = max(u+ v — 1,0) (max. negative dependence)

v

M(u,v) = min(u, v) (max. positive dependence)
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Lower Fréchet-Hoeffding bound W(u, v)
(countermonotonicity)

CopulaDistribution["Maximal”,UniformDistribution[], UniformDistribution[]]
Plot3D[CDF x,y]//Evaluate,x,0,1,y,0,1
O «Fr «=>«E» E DAC
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Upper Fréchet-Hoeffding bound M(u, v) (comonotonicity)

CopulaDistribution["Minimal”,UniformDistribution[], UniformDistribution[]]
Plot3D[CDF x,y]//Evaluate x,0,1,y,0,1

DA
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Independence copula (M(u, v))

CopulaDistribution["Product”, UniformDistribution[], UniformDistribution[]]
Plot3D[CDF x,y]//Evaluate x,0,1,y,0,1

DA
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Multivariate distribution and copula

Distinguish 2 cases:

(1) Given some copula, define a multivariate distribution by
adding some margins.

(2) Given some multivariate distribution, find the margins and
identify the copula;
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Case (1) Gumbel' s bivariate logistic distribution

Consider copula

C(u,v) = uid

u+v—uv
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Case (1) Gumbel' s bivariate logistic distribution

Consider copula

uv
C = 1
(u,v) u+v—uv (1)
Take standard logistic distributions as margins:
u=F(x)=1+e ) tandv=0G(y)=(1+e)?
(—o0 < x,y < 0
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Case (1) Gumbel' s bivariate logistic distribution

Consider copula

uv

C(u, V) = m (1)

Take standard logistic distributions as margins:
u=F(x)=1+e>X)tandv=0G(y)=(1+e¥)!

(—o0 < x,y < 0

Then, x = F}(u)=In(l/u—1) and y = G71(v) = In(1/v — 1)

Cu,v) = H(F ' (u), GH(v))
= H(x,y)
S lteX4eY (
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Case (2) Bivariate extreme value distribution

F(x,y) = exp[—(e™™ + e~)!/7]

for —oco < x,y < 00,0 > 1.
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Case (2) Bivariate extreme value distribution

F(x,y) = exp[—(e™™ + &~)1]
for —oco < x,y < 00,0 > 1.
Margins: Fi(x) = exp{—e*} and F(y) = exp{—e Y}
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Case (2) Bivariate extreme value distribution

F(x,y) = exp[—(e™™ + &~)1]
for —oco < x,y < 00,0 > 1.
Margins: Fi(x) = exp{—e*} and F(y) = exp{—e Y}
x=FYu)=—In(=Inu)and y = F; }(v) = —In(—Inv)

Cu,v) =exp (_ [(_ Inu) + (= Inv) }1/5)

an example of the class of bivariate extreme value copulas
characterized by C(u*,v') = C*(u,v) for all t > 0.
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Corresponding exercises from Hofert p. 25-27

### 2.3 Sklar’s Theorem

### First part of Sklar’s Theorem - decomposition

library(mvtnorm)

d <- 2 # dimension

rho <- 0.7 # off-diagonal entry of the correlation matrix P

P <- matrix(rho, nrow = d, ncol = d) # build the correlation matrix P
diag(P) <- 1

set.seed(64)

u <- runif(d) # generate a random evaluation point

x <- gnorm(u)

pmvnorm(upper = x, corr = P) # evaluate the copula C at u

nc <- normalCopula(rho) # normal copula (note the default dim = 2)
pCopula(u, copula = nc) # value of the copula at u

nu <- 3 # degrees of freedom
x. <= qt(u, df = nu)
pmvt (upper = x., corr = P, df = nu) # evaluate the t copula at u

try(pmvt (upper = x., corr = P, df = 3.5))

tc <- tCopula(rho, dim = d, df = nu)
pCopula(u, copula = tc) # value of the copula at u

10/37



Corresponding exercises from Hofert p. 25-27

### 2.3 Sklar’s Theorem

### Second part of Sklar’s Theorem - composition

H.obj <- mvdc(claytonCopula(l), margins = c("norm", "exp"),
paramMargins = list(list(mean = 1, sd = 2), list(rate = 3)))

set.seed(1979)
z <- cbind(rnorm(5, mean = 1, sd = 2), rexp(5, rate = 3)) # evaluation points
pMvdc(z, mvdc = H.obj) # values of the df at z

dMvdc(z, mvdc = H.obj) # values of the corresponding density at z

set.seed(1975)
X <- rMvdc(1000, mvdc = H.obj)

plot(X, cex = 0.5, xlab = quote(X[1]), ylab = quote(X[2]))
contourplot2(H.obj, FUN = dMvdc, xlim = range(X[,1]), ylim = range(X[,2]),
n.grid = 257)
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Copulas and Sklar’s theorem for d > 2 variables

C(ugy...,uqg) =PV <u,...,Uy < ug), u1,...,uq €10,1].
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Copulas and Sklar’s theorem for d > 2 variables

C(uy,...,ug) = P(Ur < u,...,Uqg < ug), u,...,uq €[0,1].

Let F(xi,...,xq) be an d-variate distribution function with
margins F1(x1), ..., Fa(xq);
then there exists an d-copula C : [0,1]9 — [0, 1] that satisfies

F(X]_, e ,Xd) = C(Fl(Xl), ey Fn(Xd)), (X17 .. .Xd) € Rd.
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If all univariate margins F1, ..., Fy are continuous, then the copula
is unique. Otherwise, C is uniquely determined on
RanF; x Ranf, x ...RanF, (RanF is the range/image of F).

12 /37



Copulas and Sklar’'s theorem for d > 2 variables

C(ula---aud):P(UlSula--'vudgud)v U1,...,Ud€[0,1]-

Let F(xi,...,xq) be an d-variate distribution function with
margins F1(x1), ..., Fa(xq);
then there exists an d-copula C : [0,1]9 — [0, 1] that satisfies

F(X]_, . ,Xd) = C(Fl(Xl), ey Fn(Xd)), (X17 .. .Xd) € Rd.

If all univariate margins F1, ..., Fy are continuous, then the copula
is unique. Otherwise, C is uniquely determined on

RanF; x Ranf, x ...RanF, (RanF is the range/image of F).

If Fl_l, ey Fd_1 are the quantile functions of the margins, then for
any (ui,...,uq) € [0,1]9

C(ugy...,uq) = F(Ffl(u1)7 ey FJl(Ud)).

12 /37



Copula density

For an (absolutely continuous) copula C there exists a copula
density c : [0, 1]" — [0, o] almost everywhere unique such that

ur Un
C(ul,...,un):/---/c(v1,...,v,,)dvn...dv1, ul,...,u €[0,1].
0 0

Such an absolutely continuous copula is n times differentiable and

0 0

8U1 8Un C(ula ,U) 5] u E[O ]

C(ul, ceey u,,)

For example, the independence copula is absolutely continuous
with density equal to 1:

n u Un
I_I(ul,...,un):Huk:/---/1dv,,...dv1
k=1

0 0

13 /37



Copula density: bivariate case
For d = 2,

0 0

TTC(Fl(Xl)a Fa(x2)) = fi(x1) fa(x2) c12(F1(x1), F2(x2))
X1 OX2

= f1a(x1, x2)

This equation shows how independence case is “distorted” by
copula density ¢ whenever c is different from 1.
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Copula density: bivariate case

For d =2,
0 0

e 3 CF(), Fa(x)) = fi(x1) (%) cra(FA(x). F2(x2)
1 2

= f1a(x1, x2)

This equation shows how independence case is “distorted” by
copula density ¢ whenever c is different from 1.
The log-density splits into

|Og f12(X1,X2) = |Og C12(F1(X1), F2(X2)) + |Og fl(Xl) + |Og F2(X2)

allowing for a two-stage estimation (marginal and copula
parameters separately).
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Copula density: bivariate case

For d =2,
0 0

e 3 CF(), Fa(x)) = fi(x1) (%) cra(FA(x). F2(x2)
1 2

= f1a(x1, x2)

This equation shows how independence case is “distorted” by
copula density ¢ whenever c is different from 1.
The log-density splits into

|Og f12(X1,X2) = |Og C12(F1(X1), F2(X2)) + |Og fl(Xl) + |Og F2(X2)

allowing for a two-stage estimation (marginal and copula
parameters separately).

Moreover,

fia(Fy ' (u). 5 ' (v)

A(F (W) R(FH(v))

c12(u, V) =

14 /37



Simulation of copulas
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Generate random variables

» Obtain an observation x of a random variable with df F:
1. Generate a variate u that is uniform on (0, 1)
2. Set x = F~1(u) (inverse distribution fct method)

16 /37



Generate random variables

» Obtain an observation x of a random variable with df F:
1. Generate a variate u that is uniform on (0, 1)
2. Set x = F~1(u) (inverse distribution fct method)
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Generate random variables

» Obtain an observation x of a random variable with df F:
1. Generate a variate u that is uniform on (0, 1)
2. Set x = F~1(u) (inverse distribution fct method)

» Obtain observations (x, y) of a random vector (X, Y) with
distribution function H

» Special case: (X, Y) standard normal with correlation p

» Exercise: Let X and Z independent standard normal and

a_f\/l—pzi 1+4+p
=1, Vi,

Set Y =pX+1—p*Z

Show: (X, Y) bivariate standard normal with correlation p.

16
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Solution of exercise

E(XY)=E(pX?+/1-p2XZ)=p,

" cov(X,Y)=E(XY)—-EX)E(Y)=p,

so
corr(X,Y) = p.

37



Simulation of bivariate copulas

» Task: Generate observations (xi, x2) of a pair of random
variables (X, X2) with joined distribution function H.
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Simulation of bivariate copulas

» Task: Generate observations (xi, x2) of a pair of random
variables (X, X2) with joined distribution function H.

Using Sklar's theorem, we need only generate a pair (uy, u2)
of observations from uniform (Uy, Uz) with joint distribution
C, the copula from X; and X5 and then use transforms

x1 = F71(u1) and xo = G~ Y(w»).
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Simulation of bivariate copulas

» Task: Generate observations (xi, x2) of a pair of random
variables (X, X2) with joined distribution function H.
Using Sklar's theorem, we need only generate a pair (uy, u2)
of observations from uniform (Uy, Uz) with joint distribution
C, the copula from X; and X5 and then use transforms
x; = F~Y(u1) and xp = G~ Y(wp).

» Problem: Given C of H, how to generate (uy, up)?

» There are many methods; one is the conditional distribution
method (aka Rosenblatt transform).

18 /37



Conditional distribution method

(see Nelsen 2006, p.36 or Mai & Scherer 2012, p.22)

9 ¢ 0 [ " dvi d
8T12 (U17U2)—8u2/0 /0 C(V1,V2) Vi avp

uy uy
= /0 c(va, up)dvg :/0 fun Up=u, (V1) dw1
=P(U1 S u1| U2 = w)
= Fu,|tp=u,(u1)
Simulate U, and fix the value wu;
Compute Fy,|yp—u,(U1) = aiuzC(ul, u):
Compute the inverse of Fy, |y, (u1): FJJUQ(V):
Simulate uniform V independent U,
Set Uy = FJI1|U2(V) and return (Uy, U) ~ C.

o e W e
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Simulation of upper Fréchet-Hoeffding bound
M(uy, uz) = min(uy, up); with fixed uy € (0,1)

U, if up < tn

M(Ul, U2) = {

uy,if up >
and

1,if up < wn

0
F _ = 7’\/’ ) =
Ur|Up=u, (U1) (1, ) {0, if up >y

Oun

for u; € [0,1], u1 # wo.

20 /37



Simulation of upper Fréchet-Hoeffding bound
M(uy, uz) = min(uy, up); with fixed uy € (0,1)

U, if up < tn

M(u1, up) =
( ! 2) {ul,if u» >

and

1,if up < wn
0,if up > 11

0
Fuyvs=u,(u1) = 90 M(ur, u2) = {

for u; € [0,1], u; # up. Note that FU1|U2:U2(U1) is not defined at
point up, we set it equal to 1. The inverse is

FJll‘U2:U2(V) =u, v S (0, 1)

Thus, the algorithm implies simulating U> and then setting

-1
FU1\U2:u2(V) = Us.

20 /37



Upper Fréchet-Hoeffding bound M(uy, us)

(comonotonicity)
- §@
&
= >§°D
i #
C“f
s &
= Gj?
s ogf
| of
S
= 0‘,
OTU 02 04 DIG UI& 170

set.seed(1980)\[ \]

U <- runif(100)

plot(cbind(U, U), xlab = quote(U[1]), ylab = quote(U[2]))
#plot(cbind(U, 1-U), xlab = quote(U[1]), ylab = quote(U[2]))
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Archimedean copulas

Let
Clu,v) = (g (u) + ¢(v))

» What are necessary and sufficient conditions for C(u, v) to be
a copula?
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Archimedean copulas

Let
Clu,v) = (g (u) + ¢(v))

» What are necessary and sufficient conditions for C(u, v) to be

a copula?

1. ¢ :[0,1] — [0, c0) strictly decreasing and continuous
2. ¥(0) =00 and (1) =0
3. 1 is convex.

1 is called (strict) generator of C(u,v).
Is the generator of a copula uniquely determined?
Show: Archimedean copulas are (1) symmetric (2) associative !



Example of Archimedean copula: Gumbel-Hougaard

(aka “bivariate extreme value")

> C(u,v) = exp (_ [(_ nu)® + (—In V)ﬂ 1/5)

has generator

(1) = (~Int)’,

23 /37



Measures of dependence

» Measures of association/dependence are scalar measures

which summarize the dependence in terms of a single number.

» Linear measures of dependence, like (Neyman-Pearson)
correlation and covariance depend on both the marginals and
the copula.

» Task: find measures of dependence for copulas
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» Let (X1, X2) ~ F with margins Fi, F, and copula C; if
T; (i = 1,2) are strictly increasing transformations of
Xi, (i =1,2), then (T1(X1), T2(X2)) has the same copula C.
(Invariance principle)
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Measures of dependence

» Measures of association/dependence are scalar measures
which summarize the dependence in terms of a single number.

» Linear measures of dependence, like (Neyman-Pearson)
correlation and covariance depend on both the marginals and
the copula.

» Task: find measures of dependence for copulas

» Let (X1, X2) ~ F with margins Fi, F, and copula C; if
T; (i = 1,2) are strictly increasing transformations of
Xi, (i =1,2), then (T1(X1), T2(X2)) has the same copula C.
(Invariance principle)

» Thus, one can study dependence independently of the margins
via (Ul, U2) = (Fl(Xl), F2(X2)) instead of (Xl,Xg).
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Linear dependence: Hoeffding's formula (aka, lemma)

Xi ~ F;, i = 1,2 random variables with E(X?) < co and joint
distribution function F. Then

COV(Xl,X2) = /Oo /OO (F(Xl,Xz) — Fl(Xl) F2(X2))dX1 dX2

/ / C(Fi(x1), F2(x2)) — Fi(x1) F2(x2))dxa dxo

Correlation fallacies:
1. F1, F> and correlation p uniquely determine F.
2. Uncorrelatedness implies independence.

3. Given Fi, F5, any level of correlation —1 < p < +1 can be
attained.

25 /37



Definition: Kendall's tau (7) (population version)

Let F be a continuous bivariate distribution function and let

(X1, X2), (X1, X3) be independent pairs with distribution F.
Kendall’s tau equals the probability of concordant pairs minus the
probability of discordant pairs, i.e.,

7= P[(X1 = X))(X2 = X3) > 0] = P[(X1 — X1)(X2 — X3) < (]

Proposition
If F has copula C, then

T=4 C(Ul,u2) dC(Ul,Uz)—l.
[0.1]?
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Definition: Kendall's tau (7) (population version)

Let F be a continuous bivariate distribution function and let

(X1, X2), (X1, X3) be independent pairs with distribution F.
Kendall’s tau equals the probability of concordant pairs minus the
probability of discordant pairs, i.e.,

7= P[(X1 = X))(X2 = X3) > 0] = P[(X1 — X1)(X2 — X3) < (]

Proposition
If F has copula C, then

T=4 C(Ul,u2) dC(Ul,Uz)—l.
[0.1]?

Interpretation of tau as expected value:

T = 4E[C(U1, u2)] -1

26 /37



Equivalent version of Kendall's tau (1)

Instead of
7':4/ C(Ul,UQ) dC(Ul,Uz)—l,
[0,1]

compute

0 0
7':1—4/ — C(ug, up)— C(uq, up)durdus,
o dun (un 2)du2 (u1, up)duydup

which is often more tractable.

27 /37



Example: Kendall's tau for FGM copula

» Farlie-Gumbel-Morgenstern copula:

Cg(ul, U2) = u1Uup + 9U1U2(1 — Ul)(l — U2), 0 c [—1, 1].

28 /37



Example: Kendall's tau for FGM copula

» Farlie-Gumbel-Morgenstern copula:

Cg(ul, U2) = u1Uup + QU1U2(1 — Ul)(l — U2), 0 c [—1, 1].

BZCQ(U]_7 U2)
8u18u2
= []. + 9(1 - 2U1)(1 - 2UQ)]dLI1dU2

ng(ul, U2) = duldU2
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Example: Kendall's tau for FGM copula

» Farlie-Gumbel-Morgenstern copula:

Cg(ul, U2) = u1Uup + QU1U2(1 — Ul)(l — U2), 0 c [—1, 1].

>
BZCQ(U]_7 U2)
=2 dind
ng(Ul, U2) 8U18U2 du1 u»
= []. + 9(1 - 2U1)(1 - 2UQ)]dLI1dU2
| 4

1 0
/[071]2 C(Ul, U2) dC(Ul, U2) = Z + E

20
=3 thus —2/9 <7 <2/9.

28 /37



Kendall's tau for Archimedean copulas

Proposition
For an Archimedean copula C generated by v (t),

_ Lap(t)
T = 1—|—4/0 0 dt.
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Kendall's tau for Archimedean copulas

Proposition

For an Archimedean copula C generated by v (t),

_ Lap(t)
T = 1—|—4/0 0 dt.

» No need to compute a double integral !

» Example: Gumbel-Hougaard with (—In t)°:

P(t)  tint
() 6
then
d—1
T§ = —=—

4]
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Survival copula

» Survival distribution of random variable X: F(x) = P(X > x)
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Survival copula

» Survival distribution of random variable X: F(x) = P(X > x)
» Bivariate survival distribution of (X, Y’) with copula C:

Hx,y) =P(X>x,Y >y)=1—F(x)— G(y) + H(x,y)
= F(x)+ G(y) — 1+ C(1 - F(x),1 - G(y))
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Survival copula

» Survival distribution of random variable X: F(x) = P(X > x)
» Bivariate survival distribution of (X, Y’) with copula C:

Hx,y) =P(X>x,Y >y)=1—F(x)— G(y) + H(x,y)
= F(x)+ G(y) — 1+ C(1 - F(x),1 - G(y))

» Margins of H(x,y): H(x,—o00) = F(x), H(—o0,y) = G(y)
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Survival copula

v

Survival distribution of random variable X: F(x) = P(X > x)
Bivariate survival distribution of (X, Y’) with copula C:

v

Hx,y) =P(X>x,Y >y)=1—F(x)— G(y) + H(x,y)
= F(x)+ G(y) — 1+ C(1 - F(x),1 - G(y))

v

Margins of H(x,y): H(x,—o0) = F(x), H(—o0,y) = G(y)

Define survival copula:

v

~

Clu,v)=u+v—-1+C(1l—u,1-v),

SO
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Survival copula

» Survival distribution of random variable X: F(x) = P(X > x)
Bivariate survival distribution of (X, Y’) with copula C:

v

Hx,y) =P(X>x,Y >y)=1—F(x)— G(y) + H(x,y)
= F(x)+ G(y) — 1+ C(1 - F(x),1 - G(y))

Margins of H(x,y): H(x,—o0) = F(x), H(—o0,y) = G(y)

Define survival copula:

v

v

~

Clu,v)=u+v—-1+C(1l—u,1-v),

SO

J— o~ J—

H(x,y) = C(F(x, G(y))

» Extension to d > 2 possible.

30/37



Copula and order statistics
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Diagonal section of a copula
Ui, ..., Ug uniform [0, 1] random variables with joint distribution
function C. For any t € [0,1]

P(max{Ui,...,Uqs} <t)= C(t,t,...,t).
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Diagonal section of a copula

Ui, ..., Ug uniform [0, 1] random variables with joint distribution
function C. For any t € [0,1]

P(max{Ui,...,Uqs} <t)= C(t,t,...,t).

dc(t) = C(t,t,...,t)is called the diagonal section of
copula C.

» d =2 with (U, V):

P(min(U,V) <t)=P(U<t)+ P(V <t)
- PHU<tN{V <t})
=2t — 0¢(t).
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Diagonal section of a copula

Ui, ..., Ug uniform [0, 1] random variables with joint distribution
function C. For any t € [0,1]

P(max{Ui,...,Uq} <t)= C(t,t,...,¢t).

dc(t) = C(t,t,...,t)is called the diagonal section of
copula C.

» d =2 with (U, V):

P(min(U,V)<t)=P(U<t)+P(V<t)
- PHU<tN{V <t})
=2t — 0¢(t).
max(2t —1),0) < dc(t) <t
for any copula C and all t € [0, 1]

32/37



Diagonal section of a copula

Definition

A function § : [0,1] — [0, 1] is called diagonal if
1. §(1) =1
2. 0<0(t2) —d(t1) < 2(t2 — t1) for all t1,t € [0,1] with t; < 1y
3. 0(t) < tforall t €[0,1].

Proposition
Let & be any diagonal and set

C(u,v) = min{u, v,1/2[0(u) + o(v)]}.

Then C is a copula with diagonal section § (Nelsen-Fredricks
copula).
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Diagonal section of a copula

Definition

A function § : [0,1] — [0, 1] is called diagonal if
1. §(1) =1
2. 0<0(t2) —d(t1) < 2(t2 — t1) for all t1,t € [0,1] with t; < 1y
3. 0(t) < tforall t €[0,1].

Proposition
Let & be any diagonal and set

C(u,v) = min{u, v,1/2[0(u) + o(v)]}.

Then C is a copula with diagonal section § (Nelsen-Fredricks
copula).

C is not unique!
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Copula of (extreme) order statistics

Random sample Xy, ..., X, independent identically distributed
random variables with continuous distribution function F.

» What is the copula of
Xy = min{Xy,..., Xy} and X(p) = max{Xy,..., Xp} ?
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Copula of (extreme) order statistics
Random sample Xy, ..., X, independent identically distributed
random variables with continuous distribution function F.

» What is the copula of
Xy = min{Xy,..., Xy} and X(p) = max{Xy,..., Xp} ?
Then Fi(x) = P(X1) < x) =1— (1 - F(x)") and
Fn(y) = P(X(n) < ) F(y).
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Copula of (extreme) order statistics
Random sample Xy, ..., X, independent identically distributed
random variables with continuous distribution function F.

» What is the copula of
Xy = min{Xy,..., Xy} and X(p) = max{Xy,..., Xp} ?
Then Fi(x) = P(X1) < x) =1— (1 - F(x)") and
Fn(y) = P(X(n) < ) F(y).

» Then,

Fin(x,y) = P({X1) < x} N {X(n) < y})

_ {F"(y) —(F(y) — F(x))" if x <y
F"(y) if x> y.
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Copula of (extreme) order statistics
Random sample Xy, ..., X, independent identically distributed
random variables with continuous distribution function F.

» What is the copula of
Xy = min{Xy,..., Xy} and X(p) = max{Xy,..., Xp} ?
Then Fi(x) = (X1 x)=1-(1-F(x)") and
Fn(y) = P(X(n) < ) F(y).

» Then,

Fin(x,y) = P({X1) < x} N {X(n) < y})

_ {F"(y) —(F(y) — F(x))" if x <y
F"(y) if x> y.

» Find copula C(Fi(x), Fa(y)) = F1,n(x, y) by setting

C(u,v) = Fl,,,(Fl_l(u), F;l(v)) u,v € [0,1].
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Copula of (extreme) order statistics

» With F7 1 (u) = F71(1 — (1 — u)Y/") and F;(v) = F~Y(v/m)

v—(vl/"—i—(l—u)l/”—l)”, ifl—(l—u)l/” < vi/n

Cn ) =
(U V) {V if1— (1 _ u)l/n > Vl/n,

a copula describing the dependence structure of the minimum
and maximum of n independent random variables.
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Copula of (extreme) order statistics

» With F7 1 (u) = F71(1 — (1 — u)Y/") and F;(v) = F~Y(v/m)

Co(u,v) = {

a copula describing the dependence structure of the minimum
and maximum of n independent random variables.
What happens for n = oco?

VN (VAR ) LA LN R ) LU
v if 1 —(1—u)¥/" > v/
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Copula of (extreme) order statistics

» With F7 1 (u) = F71(1 — (1 — u)Y/") and F;(v) = F~Y(v/m)

Couv) = v — (vl/" +(1- u)l/” -1 if1—(1- u)l/” < vi/n
v if 1—(1—u)¥/"> v/

a copula describing the dependence structure of the minimum

and maximum of n independent random variables.

What happens for n = oco?

» Kendall's tau 1

n—1

Ta(X(2): X(m) = 3
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Tail dependence
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Vine copulas
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