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Example 1

(i) If (Z1, Z2) follows a bivariate Gaussian distribution, do Z;
and Z, follow univariate Gaussian distributions?

(i) If Z1 and Z, follow univariate Gaussian distributions, does
(Z1, Z») follow a bivariate Gaussian distribution?

COPULAS ALLOW TO MODEL MULTIVARIATE
(STOCHASTIC) DEPENDENCY SEPARATELY FROM THE
MARGINALS
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important definitions

. F is non-decreasing: x; < x» = F(x1) < F(x2);
. F is right-continuous: lim,_,g+ F(x + h) = F(x);
cimy— oo F(x) = 0 and limy_o F(x) = 1;

. F has at most a countable number of discontinuities.

» If a function F : R — [0, 1] is non-decreasing,

right-continuous, limy_,_ o F(x) =0, and limy_, F(x) =1,
then F is the distribution function of some random variable.
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Some important definitions

A distribution function F is called

» discrete if for some countable set of numbers {x;} and point
masses {p;},

F(x) = Z pj, forall x € R.

Xj<x

The function p is called probability mass function;
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Some important definitions

A distribution function F is called

» discrete if for some countable set of numbers {x;} and point
masses {p;},

F(x) = Z pj, forall x € R.
Xj<x
The function p is called probability mass function;

> absolutely continuous if there exists a non-negative,
(Lebesgue) integrable function f, such that

F(b) - F(a) = /ab F(x) dx for all a < b.

The function f is called density of F;

» singular if F # 0, F exists and equals 0 a.e. (almost
everywhere).

6
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Discrete distribution function
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Continuous distribution function

F(x)

—_

8/29



Some important definitions

The joint, or multivariate, distribution function of random
vector X = (X1, Xa, ..., Xp)

Fx, Xo,... %, (X1,, %2, ..., xn) = P(X1 < x1, X0 < xo,..., X < Xp),
for x, € R, k=1,2,...,n. This is written more compactly as

Fx(x) = P(X < x)

29



Some important definitions

The joint, or multivariate, distribution function of random
vector X = (X1, Xa, ..., Xp)

Fx, Xo,... %, (X1,, %2, ..., xn) = P(X1 < x1, X0 < xo,..., X < Xp),
for x, € R, k=1,2,...,n. This is written more compactly as

Fx(x) = P(X < x)

» For discrete distributions the joint probability mass function
is defined by

px(x) = P(X =x), xeR"
» and in the absolutely continuous case we have a joint density

fx(x) = 0" Fx(x)

R A S e R".
Ox10x2 -+ - O, X
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Bivariate normal density function

Multivariate Normal Distribution
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Some important definitions

Let (X1, X2) be a 2-dimensional continuous random vector with
joint density function fi2(x1, x2). Then the marginal density
function is defined as

fi(x1) = / fia(x1, x2) dxz.

—00

and the marginal distribution function is defined as

X1 o0
F1(X1) = P(Xl < X1,X2 < OO) = / / f]_Q(X{,X2) dX{ng.
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Proposition

Necessary and sufficient conditions for a bounded, nondecreasing,
and right-continuous function F on R? to be a

bivariate distribution function are:

1. iMoo F(x1,%0) = 0, j = 1,2;

2. |im(x1,><2)—>(oo,oo) F(Xl,Xg) = ].,'
3. (rectangle inequality or 2-increasing fct) for any (a1, az),
(bl, b2) with a1 < by, a» < by,

F(b1, b2) — F(a1, b2) — F(b1,a2) + F(a1,a2) > 0.

al b1

/29



Quantile function

Let X be are

al-valued random variable with distribution function

F(x). Then the quantile function of X is defined as

Q(p)

=F Y (p)=inf{x: F(x)>p}, 0<p<1l. (1)
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Quantile function

Note: If F(x) is continuous and strictly increasing, Q(p) is the
unique value x such that F(x) = p.

Exercise 1 Let X be an Exp()\) random variable:
P(X < x)=F(x) =1—exp[—Ax]

for x > 0 and A > 0. Compute the quantile function Q(p).

Solution:
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Q(p), then 1/X has quantile function 1/Q(1 — p).
Solution:

14 /29



Quantile function

Note: If F(x) is continuous and strictly increasing, Q(p) is the
unique value x such that F(x) = p.

Exercise 1 Let X be an Exp()\) random variable:
P(X < x)=F(x) =1—exp[—Ax]

for x > 0 and A > 0. Compute the quantile function Q(p).
Solution: Q(p) = A~(—log(1 — p)).

Exercise 2 Show: if X (continuous) has quantile function
Q(p), then 1/X has quantile function 1/Q(1 — p).

Solution:
1—-p=P(X>x)=P(1/X <1/x); thus, Q(1 — p) =1/x.
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Uniform distribution on [a, b]

For a,b € R, a < b, define the uniform distribution on [a, b] by
density

Exercise 3 Find the uniform distribution fct F(x) and its
quantile fct.

Solution:
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Uniform distribution on [a, b]

For a,b € R, a < b, define the uniform distribution on [a, b] by
density

1
f(x) =
) =5—
Exercise 3 Find the uniform distribution fct F(x) and its
quantile fct.
Solution:
F)=>"2 and Q(p)=a+(b—a)p.
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Uniform distribution on [a, b]

For a,b € R, a < b, define the uniform distribution on [a, b] by
density

1
f(x) =
) =5—
Exercise 3 Find the uniform distribution fct F(x) and its
quantile fct.
Solution:
F(x) = ’;: z and  Q(p)=a+ (b— a)p.

Let U be a uniform random variable on [0, 1]; then for
0<c<d<l,
Plc<U<d)=d-c.

15/29
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The distribution of random variable F(X)

Note: From now on, we only consider continuous random
variables and random vectors. X ~ F (~ means “distributed as")
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The distribution of random variable F(X)

Note: From now on, we only consider continuous random
variables and random vectors. X ~ F (~ means “distributed as")

» If X is a random variable with distribution function Fx, then

Fx(X) is a transformation of X and again a random variable.

What is the distribution of Fx(X)?
» ForO<u<1,

P(Fx(X) < u) = P(X < F*(1)) = Fx(Fx (1)) = u

» Thus, the distribution of Fx(X) is uniform on [0, 1]:
Fx(X) ~U(0,1) (“probability integral transform").

» Let U~ U(0,1) and F any distribution fct. Then
X =FY(U)~F.
Proof: P(F71(U) < x) = P(U < F(x)) = F(x), x € R.
(“quantile transform™)

17/29



A Motivating Example (Hofert, 2018)

Fig. 1.1 Scatter plots of » = 1000 independent observations of (X, X3) (left) and of (¥7, ¥3)
(right)

corr(X1,Xz2) = .77 and corr(Y1, Y2) = .56
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A Motivating Example (Hofert, 2018)

The marginal distributions of (X1, X2) and (Y1, Y2)
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Fig. 1.2 Kemel density estimates of the densities of Xy, X, (left) and ¥y, ¥; (right). The dashed
curves represent the N(O, 1) (left) and Exp(1) (right) densities

If we could transform the two data sets so that they become

similar in terms of the underlying marginal dfs, their comparison in
terms of dependence would be made on much fairer grounds.
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A Motivating Example (Hofert, 2018)

After a probability transformation of the marginals of (X1, X2) and
(Yl, Y2) — (Fl(Xl), F2(X2)) and (Gl(yl), G2(Y2))

Fa(Xg)
Gy(Y2)

Fig. 1.3 Scatter plots of # = 1000 independent observations of the bivariate random vectors
(F1(X1), F2(X2)) (left) and (G1(T1), G2(¥2)) (right)
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A Motivating Example (Hofert, 2018)

After a probability transformation of the marginals of (X1, X2) and
(Yl, Y2) — (Fl(Xl), F2(X2)) and (Gl(yl), G2(Y2))

Fa(Xg)
Gy(Y2)

Fig. 1.3 Scatter plots of # = 1000 independent observations of the bivariate random vectors
(F1(X1), F2(X2)) (left) and (G1(T1), G2(¥2)) (right)

If dependence between the components of a random vector should not be
affected by its marginal distributions, the conclusion is that the two
data sets are indistinguishable in terms of dependence and only
differ in terms of the underlying marginal dfs.
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Definition of copula

A copula C is a multivariate distribution with standard
uniform margins, that is, U ~ U(0,1).
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A copula C is a multivariate distribution with standard
uniform margins, that is, U ~ U(0,1).
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2. for every u,v € [0,1],
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C(uz, v») — C(up,v1) — C(u1, v2) + C(u1,v1) > 0.

Example: Independence copula
C(u,v) =uv

Check properties 1-3 !
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Definition of copula

A copula C is a multivariate distribution with standard
uniform margins, that is, U ~ U(0,1).
Characterization in 2-dimensional case:
1. C:[0,1]? ~ [0,1]
2. for every u,v € [0,1],
C(u,0)=0= C(0,v) and C(u,1) =w and C(1,v) =v,
3. for every uy, up, v1,vs € [0,1] such that u; < up and vi < vy,
C(uz, v») — C(up,v1) — C(u1, v2) + C(u1,v1) > 0.

Example: Independence copula

C(u,v) =uv
Check properties 1-3 ! For u; < up and v; < vy,

Upva—tpvi—tnvat+uivy = ua(va—vi)—u1(va—vi) = (v2—ur)(va—vi) > 0
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Sklar's Theorem, 1959

(Remember: assuming continuous random variables).
For any bivariate distribution function F(xi,x2) with margins
Fi1(x1) and Fa(x2) there exists a unique copula C such that

F(X]_,X2) = C(Fl(Xl), F2(X2)).
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Sklar's Theorem, 1959

(Remember: assuming continuous random variables).
For any bivariate distribution function F(xi,x2) with margins
Fi1(x1) and Fa(x2) there exists a unique copula C such that

F(Xl,XQ) = C(Fl(Xl), F2(X2)).

Moreover, if F1(x1) and Fa(x2) are the marginals of F(xi,x2), then
copula C can be written as

Clur, up) = F(Fy Hw), Fy M (w2)),

where Ffl, F{l are the quantile functions of the margins.

A copula “couples” the bivariate distribution with its marginals.

(i) study the structure of stochastic dependency in a “scale-free” manner, i.e.,
independent of the specific marginal distributions,

(ii) construct families of multivariate distributions with specified properties.
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Copula publications/citations in Web-of-Science
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Abe Sklar (1925-2020)

a Depend. Model. 2021; $:200-224

DE GRUYTER

Interview Article

Open Access

Special Issue in memory of Abe Sklar

Christian Genest*

A tribute to Abe Sklar

https://doi.org/10.1515/demo-2021-0110

Received June 27, 2021; accepted July 2, 2021

This paper gives an account of the life and works of the American mathemati-
cian Abe SKar. Born in Chicago on November 17, 1925, SKlar completed his
PhD at the California Institute of Technology in 1956. He then joined the Ili-
nois Institute of Technol ogy, wherehetaught mathematics until hisr etirement
in 1995, With his close friend and lifelong collaberator Berthold Schweizer
(1929-2010), he was a pioneer of the theory of probabilistic metric spaces,
which wereintroduced in 1942 by the Austro-American mathematidan Karl
Menger (1902-85). Together, Schweizer and Sklar made important contribu-
tions to the algebra of functions, the study of tnorms, and distributional
chaos. Sklar is also credited for the notion of copula and for showing that any
multivariate distribution function can be expressed in terms of its univariate
margins and a copula. Thisyesult, known as Sklar’s representation theorem,
isthe bedrodk of a widespread data analytical technique called copula mod-
eling. SKar passed away in Chicago on October 30, 2020,

By now, just about anyone who is conscious of the role of dependence in data analysis has heard of cop-
ulas asa powerful and flexible tool for modeling association and assessing its impact on inference, decision
making, and risk management. Thisapproach isrooted in a 3-page note, written in French, which appeared
in 1959 in the Publications de Plnstitut de statistique de PUniversité de Paris. This paper [S6], attributed only
to “M. Sklar” (M. for Mr.), without address or affiliation, claimed without proofthat given any d-variate cu-
mulative distribution function H with one-dimensional margins Fi, ..., Fy, a function € : [0, 114 = [0, 1]
having specific analytical properties can always be found such that

H=C(Fy, .., Fy). (3]
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https:/ /www.wired.com/2009/02 /wp-quant/
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Recipe for Disaster: The Formula That Killed Wall Street

In the mid-"80s, Wall Street turned to the quants—brainy financial engineers—to invent new ways to boost profits. Their methods for minting money worked
brilliantly... until one of them devastated the global economy.

nthe mid-80s,
evastted th globaleconomy. * JIN KRANTZ / INOEX STOCK TRAGERY. INC. / GALLERY STOCK

Ther methods . anty..untl one ofthem

A YEAR AGO, it was hardly unthinkable that a math wizard like David X. Li might I—— 26 /29



The formula that killed Wall Street

Felix Salmon (Wired, 2009; reprinted in Significance, 2012)

m]

=

Do
27/29



Some references

> Hofert, M, Kojadinovic, |, Machler, M., Yan, J. (2018) Elements of
Copula Modeling with R. Springer-Verlag, UseR! Series

> Durante, F., & Sempi, C. (2015). Principles of copula theory. Boca
Raton, FL: CRC Press.

> Joe, H. (2014). Dependence modeling with copulas. Boca Raton,
FL: Chapman & Hall/CRC.

» Jaworski, P., Durante, F., Hardle, W. K., & Rychlik, T. (Eds.)
(2010). Copula theory and itsapplications. Lecture notes in
statistics (Vol. 198). Berlin: Springer

> Sklar, A. (1959). Fonctions de répartition & n dimensions et leurs
marges. Publications de I'Institut de Statistique de I'Université de
Paris, 8, 229-231.

> Nelsen, R. B. (2006). An introduction to copulas. New York:
Springer.

> Groesser & Okhrin (2020) Wires Computational Statistics: Copulae:
Overview and Recent Developments.

28 /29



Some references

Bo Chang

HOME

BIO

UBLICATIONS
BLOG

| am a software engineer at Google Brain, based in Toronto,
Canada. Prior to that, | was a machine learning researcher at
Borealis Al. | finished my Ph.D. in statistics at the University of
British Columbia.

Email: contact@bochang.mecontact@bochang.me

u}
o)
I
i
it




	Introduction: Background
	Some important definitions and results
	Distribution function
	Quantile function
	Copula: definition
	Some history
	Some references

