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Example 1

(i) If (Z1,Z2) follows a bivariate Gaussian distribution, do Z1
and Z2 follow univariate Gaussian distributions?

(ii) If Z1 and Z2 follow univariate Gaussian distributions, does
(Z1,Z2) follow a bivariate Gaussian distribution?

COPULAS ALLOW TO MODEL MULTIVARIATE
(STOCHASTIC) DEPENDENCY SEPARATELY FROM THE

MARGINALS
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Some important definitions

1. F is non-decreasing: x1 < x2 =⇒ F (x1) ≤ F (x2);
2. F is right-continuous: limh→0+ F (x + h) = F (x);
3. limx→−∞ F (x) = 0 and limx→∞ F (x) = 1;
4. F has at most a countable number of discontinuities.

I If a function F : R→ [0, 1] is non-decreasing,
right-continuous, limx→−∞ F (x) = 0, and limx→∞ F (x) = 1,
then F is the distribution function of some random variable.
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Distribution function
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Some important definitions
A distribution function F is called

I discrete if for some countable set of numbers {xj} and point
masses {pj},

F (x) =
∑
xj≤x

pj , for all x ∈ R.

The function p is called probability mass function;

I absolutely continuous if there exists a non-negative,
(Lebesgue) integrable function f , such that

F (b)− F (a) =
∫ b

a
f (x) dx for all a < b.

The function f is called density of F ;
I singular if F 6= 0,F ′ exists and equals 0 a.e. (almost

everywhere).
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Discrete distribution function
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Continuous distribution function
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Some important definitions
The joint, or multivariate, distribution function of random
vector X = (X1,X2, . . . ,Xn)′

FX1,X2,...,Xn (x1,, x2, . . . , xn) = P(X1 ≤ x1,X2 ≤ x2, . . . ,Xn ≤ xn),

for xk ∈ R, k = 1, 2, . . . , n. This is written more compactly as

FX(x) = P(X ≤ x)

.

I For discrete distributions the joint probability mass function
is defined by

pX(x) = P(X = x), x ∈ Rn

I and in the absolutely continuous case we have a joint density

fX(x) = ∂nFX(x)
∂x1∂x2 · · · ∂xn

, x ∈ Rn.
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Bivariate normal density function

https://commons.wikimedia.org/w/index.php?curid=1260349
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Some important definitions

Let (X1,X2) be a 2-dimensional continuous random vector with
joint density function f12(x1, x2). Then the marginal density
function is defined as

f1(x1) =
∫ ∞
−∞

f12(x1, x2) dx2.

and the marginal distribution function is defined as

F1(x1) = P(X1 ≤ x1,X2 <∞) =
∫ x1

−∞

∫ ∞
−∞

f12(x ′1, x2) dx ′1dx2.
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Proposition
Necessary and sufficient conditions for a bounded, nondecreasing,
and right-continuous function F on R2 to be a
bivariate distribution function are:

1. limxj→−∞ F (x1, x2) = 0, j = 1, 2;
2. lim(x1,x2)→(∞,∞) F (x1, x2) = 1;
3. (rectangle inequality or 2-increasing fct) for any (a1, a2),

(b1, b2) with a1 < b1, a2 < b2,

F (b1, b2)− F (a1, b2)− F (b1, a2) + F (a1, a2) ≥ 0.
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Quantile function
Let X be a real-valued random variable with distribution function
F (x). Then the quantile function of X is defined as

Q(p) = F−1(p) = inf{x : F (x) ≥ p}, 0 ≤ p ≤ 1. (1)
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Quantile function

Note: If F (x) is continuous and strictly increasing, Q(p) is the
unique value x such that F (x) = p.

Exercise 1 Let X be an Exp(λ) random variable:

P(X ≤ x) = F (x) = 1− exp[−λx ]

for x ≥ 0 and λ > 0. Compute the quantile function Q(p).
Solution:

Q(p) = λ−1(− log(1− p)).
Exercise 2 Show: if X (continuous) has quantile function
Q(p), then 1/X has quantile function 1/Q(1− p).
Solution:
1− p = P(X ≥ x) = P(1/X ≤ 1/x); thus, Q(1− p) = 1/x .
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Uniform distribution on [a, b]

For a, b ∈ R, a < b, define the uniform distribution on [a, b] by
density

f (x) = 1
b − a .

Exercise 3 Find the uniform distribution fct F (x) and its
quantile fct.
Solution:

F (x) = x − a
b − a and Q(p) = a + (b − a)p.

Let U be a uniform random variable on [0, 1]; then for
0 ≤ c < d ≤ 1,

P(c ≤ U ≤ d) = d − c.
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The distribution of random variable F (X )

Note: From now on, we only consider continuous random
variables and random vectors. X ∼ F (∼ means “distributed as”)

I If X is a random variable with distribution function FX , then
FX (X ) is a transformation of X and again a random variable.
What is the distribution of FX (X )?

I For 0 < u < 1,

P(FX (X ) ≤ u) = P(X ≤ F−1
X (u)) = FX (F−1

X (u)) = u

I Thus, the distribution of FX (X ) is uniform on [0, 1]:
FX (X ) ∼ U(0, 1) (“probability integral transform”).

I Let U ∼ U(0, 1) and F any distribution fct. Then
X = F−1(U) ∼ F .
Proof: P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x), x ∈ R.
(“quantile transform”)
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A Motivating Example (Hofert, 2018)

corr(X1,X2) = .77 and corr(Y1,Y2) = .56

18 / 29



A Motivating Example (Hofert, 2018)
The marginal distributions of (X1,X2) and (Y1,Y2)

If we could transform the two data sets so that they become
similar in terms of the underlying marginal dfs, their comparison in
terms of dependence would be made on much fairer grounds.
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A Motivating Example (Hofert, 2018)
After a probability transformation of the marginals of (X1,X2) and
(Y1,Y2) → (F1(X1),F2(X2)) and (G1(Y1),G2(Y2))

If dependence between the components of a random vector should not be
affected by its marginal distributions, the conclusion is that the two
data sets are indistinguishable in terms of dependence and only
differ in terms of the underlying marginal dfs.
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Definition of copula
A copula C is a multivariate distribution with standard
uniform margins, that is, U ∼ U(0, 1).

Characterization in 2-dimensional case:
1. C : [0, 1]2 7→ [0, 1]
2. for every u, v ∈ [0, 1],

C(u, 0) = 0 = C(0, v) and C(u, 1) = u and C(1, v) = v ,
3. for every u1, u2, v1, v2 ∈ [0, 1] such that u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.
Example: Independence copula

C(u, v) = uv

Check properties 1-3 ! For u1 ≤ u2 and v1 ≤ v2,

u2v2−u2v1−u1v2+u1v1 = u2(v2−v1)−u1(v2−v1) = (u2−u1)(v2−v1) ≥ 0
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Sklar’s Theorem, 1959

(Remember: assuming continuous random variables).
For any bivariate distribution function F (x1, x2) with margins
F1(x1) and F2(x2) there exists a unique copula C such that

F (x1, x2) = C(F1(x1),F2(x2)).

Moreover, if F1(x1) and F2(x2) are the marginals of F (x1, x2), then
copula C can be written as

C(u1, u2) = F (F−1
1 (u1),F−1

2 (u2)),

where F−1
1 ,F−1

2 are the quantile functions of the margins.
A copula “couples” the bivariate distribution with its marginals.
(i) study the structure of stochastic dependency in a “scale-free” manner, i.e.,
independent of the specific marginal distributions,
(ii) construct families of multivariate distributions with specified properties.
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Copula publications/citations in Web-of-Science 1995-2021
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Copula publications/citations in Web-of-Science 1995-2021
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Abe Sklar (1925-2020)
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https://www.wired.com/2009/02/wp-quant/

26 / 29



The formula that killed Wall Street

Felix Salmon (Wired, 2009; reprinted in Significance, 2012)
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